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ON THE EXCITATION OF A PRESTRESSED CYLINDER* 

V.V. KALINCHUK and I.B. POLIAKOVA 

The linearized theory of propagation of elastic waves /1,2/ is used to develop a 

method of investigating the specific features of an infinite, prestressed circular 

cylinder excited by a rigid strap vibrating at its surface. The material of the 

cylinder is assumed to be compressible, initially isotropic, with elastic potential 

of an arbitrary form. The axisymmetric oscillations of the strap are harmonic, of 

frequency 0. The study is based on the method of reducing a boundaryvalueproblem 

of the theory of elasticity to an integral equation, or to a system of integral 

equations, depending on the conditions of the contact between the strap and the 

cylinder. 

Numerical analysis of the properties of the integral operator symbols makes it possible 

to study the influence of the initial deformation intensity, as well as of the choice of the 

elastic potential form, on the basic characteristics of the wave process taking place within 

the cylinder. A more detailed analysis can be made in the course of constructing solutions 

of the integral equations. In particular, the problem of a radially oscillating strap canbe 

used to show the effect of the magnitude of the initial stresses on the distribution of con- 

tact stresses under the stamp, and on the behavior of the free surface outside it. 

1. The initial state of stress is assumed homogeneous, i.e. /1,2/ 

Here unO denote the components of the initial displacement vector, uii10 are the components 

of the generalized initial stress tensor, h, denote the relative elongations of the fibers 

and 6in is the Kronecker delta. 

Let us pass to the cylindrical r,rp,z-coordinate system, directing the Oz-axis along 

the O+,-axis. Using the principle of limit absorption /3,4/ we can reduce the problem of 

axisymmetric excitation of a cylinder by a virbrating strap to the study of the equations 

(u, (2, t) = u, (2) t?-i0', W (2, t) = W (2) e-iot are respectively the radial and axial component of the dis- 

placement vector, q(z) and T(Z) are the normal and tangential components of the contactstress 

vector, R = i is the cylinder radius and o denotes the half-width of the strap) 
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Here Ijn=Ij(un) (i=O,$,n== 1,2) are the modified Bessel functions, p is the density of the med- 
and pij are the coefficients characterizing the relations connecting the stressesand 

~~~n$ions determined by the elastic potentials /1,2/. Their concrete forms corresponding 
to the types of elastic potential considered in the paper, will be given below. 

The contour r lies on the real axis and deviates from it only when going round the neg- 
ative singularities of the function Kjn("rf (1.31 from above, and round the positive singular- 
ities from below, The choice of the contour is governed by the principle of limit absorption 

/4/. 
The functions Kjn(U) (1.3), (1.4) are meromorphic in the complex plane, real onthereal 

axis, and have on it a finite number of zeros and poles, the number depending on 
even and Kjn(u)(j + n) are odd). The following expression holds when u--r 00: 

Kj* (Ii) = Cj*U-' + dj,U-' + 0 (Ue3) 

x2 (Knn (14 are 

The constants appearing in (1.6) depend on the cylinder material characteristics 
magnitude of the initial stress. Their actual form can be obtained simply using 
ions of the Bessel functions, but they are cumbersome and therefore omitted. 

(1.6) 

and on the 
the expans- 

2. The relations (1.2)-- (1.4) make possible the study of the effect of the initial de- 
formation intensity on the wave process within the cylinder. As we know /4,5/, the behavior 
of the free surface can be described with sufficient accuracy by means of the formulas 

,Ff(zf = ~(*z-a), rf-z-Czai (2.1) 

(2.2) 

where zkO and zkU are roots of the equation A (u, x2)= 0 at o,, *"=O and o,*“=S, respectively, 
and Rk are numerical factors. 

It is clear that the poles of the functions Xjn(a) (1.31 are connected with the phase 
velocities of the waves propagating along the cylinder surface by the relations V, = O/Z&. 
This enables us to estimate the effect of the initial stresses on the phase velocities of the 
surface waves, by analysing the effect of the initial deformation intensity on the distribu- 
tion of zeros of the function A(u, Y..J (1.4). 

Let us assume that the initial state is defined by the condition 

mu*0 = (Ipz** zz 0, ffaa*o = s = const. 

The constants CZik and P$k appearing in the expressions for the integral operators willhavethe 
form 

ais = A 3 2~ + kda<i”p i = I,3 

ali = h $ ko5’Uli’q p,j = p -i- k,,Sml,O, i = 2, 3 
nllo = 2a + 2 (1 - v) b - yc, DQ~’ = 2a + (6 + 4y) b + 2 (i + y) c 
a3 = a - yb, ~1s" = 20 + 2 (3 + 27) b + 2 (1 -+- Y)C 
m,aO == b - yci2, mlsa = b + (2 + y) c/4 
&" = i - koyS, ha2 = 1 _t 2ko (t + y) S 

y = hip, ko = (3h + 2@-', ~"as = or 

in thecaseoftheMurnaghanpotentia1 (withonlythelinearterms retained /2/)where I and p are 
the Lame coefficients and a,b,c are third order constants appearing in the expression for the 
Murnaghan potential, and the form 

ati = U-'-f (28 - XkpSA-*) A*-', i = 1, 3 

a,, = ~/(l~~A~), I"XS = (21~ - &SA-')ilA,As (A, + As)1 
A, = 1 - 0.5 k+SA-x, A, = 1 + ft + y) k,,SA--’ 

A = 1 - (1 + v) Sko 

in the case of a harmonic type potential /l/. 
Figures 1 and 2 depict the plots of q = (z~~-+.~).~O~/Z~~ for the steel 09G2S and alloy AMG-6, 

respectively. The solid lines refer to the Murnaghan potential and the dashed lines to the 
harmonic potential. Numbers 1, 2 and 3 denote the curves for the values S = 5.1O-~p,1O-s~,5.10-~~. 
We see that in the case of steel an increase in the initial stress leads to increased phase 
velocity exceeding its dependence on the form of the elastic potential, For the alloy this 
is not true, as the change in the form of the elastic potential alters completelythecharacter 
of the dependence of the phase velocity of the wave on the initial stress. The latter fact 
shows that when the wave processes in the initially deformed bodies are investigated, then not 
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Fig.1 

only the initial deformation in- 

tensity is of great importance,but 
also the choice of the form of the 

elastic potential. The choice 
should be justified for each part- 

icular case. 

Fig.2 

Fig.3 

3. We shall investigate the effect of initial stresses on the wave process in the cy- 

linder in more detail, using the problem of radial vibration of the strap. The solution of 

this problem can be reduced to solving the integral equation 

j q (4) kn (2 - f) dE, = ZnyU, (I), 12 If a (3.1) 
-0 

As before, Q(E) are the contact stresses, U,(z) denote the displacements of the cylinder sur- 

face under the strap, and kll(t) is given by the formula (1.2)- (1.4). 

Figure 3 depicts the curves showning the distribution of real zeros (dashed lines) and 

poles (solid lines) of the function ~,,(~)for a medium with a Murnaghan potential, for the 

following values: h=926.f08 N/m2, P = 475.108 N/ m, a=3i9.10~N,/m2, b = -303.10°N/m~ C= -78,4.iOgN,,2and 2 

s = 0. Numerical analysis shows that when S#O the qualitative aspect of the graph remain 

the same, and that implies /4,5/ that (3.1) has a unique solution in &,a>~. 

4. Knowing the distribution of zeros and poles of R,l(u), we can construct on approxi- 

mate solution of the integral equation (3.1). Let us replace K,,(u) by the function /4,5/ 

K+(u) = C1l(U*+Ba)-l/.fi (U'- zk*)(U* -6,')~' (4.1) 
k-1 

Here Es1 is a given approximation parameter, tk(k= 1, 2, . . ..m) and zk(k= l,Z,...,m,)are real 

poles and zeros and K,,+(u), 6k (k = m + 1, . . ., a) zk (k = ml + 1, . ., 4 are COmpleX numbers which can be 

obtained from the condition of least deviation of K*(u) frordKl1 (~)on the real axis /4,5/. In (2.1) 

and (2.2) we gave aschematic formofthe solution forthecaseU'r(s) = arP (+)andof the approximating 
function (4.1). Thecontact stressescan be written in the form (Nk are numerical coefficients) 

9 (2) = Kl,-‘(0) + 2 N, ['=P (izk (a + 2)) + =P 62, (a - 2))) +orerp (-B(a -I zl))] 
A=* 

The solutionsinmore detailed formas wellasthe formulas for Nk and Rkcan be found in /4,5/. 
Figure 4 gives the computer-derived graphs of the functions Reqo = RepaP-l for l)=O 

(plane strap case) and a=7, ~~5.5 S=O (a dot-dash line). The curves 1,2, and 3 correspond 

to the quantity 5= (Rep,- Re qd.10’ for S = 5.10-$, IO-$ 5.10-3~. 

Figure 5 depicts the graphs illustrating the displacement of the free surface of the 

cylinder. The dot-dash line corresponds to 'Pa(t) (2.2) with S = 0 , line 1 to (9, -%).lOa 

with S = 5.1O-5 p and line 2 to I, (cp, - q@.lO* with S = IO-3p . We see that when the initial 

stress increases, so does sharply its influence, and the greater the absolute value of the 

derivative of cp(t) , the greater the influence. 
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